
CocoQa: Question Answering for Coding
Conventions over Knowledge Graphs

Tianjiao Du, Junming Cao, Qinyue Wu, Wei Li, Beijun Shen, Yuting Chen
School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University, Shanghai, China
{tjsoulshe, junmingcao, wuqinyue, liwei, bjshen, chenyt}@sjtu.edu.cn

Abstract—Coding convention plays an important role in guar-
anteeing software quality. However, coding conventions are usu-
ally informally presented and inconvenient for programmers to
use. In this paper, we present CocoQa, a system that answers
programmer’s questions about coding conventions. CocoQa
answers questions by querying a knowledge graph for coding
conventions. It employs 1) a subgraph matching algorithm that
parses the question into a SPARQL query, and 2) a machine
comprehension algorithm that uses an end-to-end neural network
to detect answers from searched paragraphs. We have imple-
mented CocoQa, and evaluated it on a coding convention QA
dataset. The results show that CocoQa can answer questions
about coding conventions precisely. In particular, CocoQa can
achieve a precision of 82.92% and a recall of 91.10%.
Repository: https://github.com/14dtj/CocoQa/
Video: https://youtu.be/VQaXi1WydAU

Index Terms—Coding convention, question answering, knowl-
edge graph

I. INTRODUCTION

Coding convention plays an important role in software

development. Coding conventions are rules that programmers

need to obey when programming; they vary from languages

to languages, companies to companies, and even projects

to projects. Coding conventions positively affects software

development in that they do improve comprehensibility of

the code, enhance quality, maintainability and reusability of

a software product, etc. Meanwhile, coding conventions are

typically trivial and informally presented, making it difficult

for programmers to follow and/or check their products against

conventions of interests.

For this reason, many efforts have been spent on de-

veloping facilities that allow programmers to program with

coding conventions. One human-friendly solution is to develop

question answering (QA) systems for coding conventions—

a QA system allows programmers to interactively raise their

questions and answers them.

Though automated question answering has been intensively

studied, how to develop QA for coding conventions is still

a challenging problem. So far there exist two mainstreams

of QA systems: knowledge base (KB)-based QA systems and

corpus-based ones.

A knowledge base can store complex structured data in-

cluding relations and entities, and a KB-based QA system can

query structured knowledge bases directly in order to answer

a question [2], [5], [8], [10], [11], [15]. However, knowledge

bases have inherent limitations. They are far from complete

and usually lack of contextual information. Consequently, a

question may not always have its answers in a knowledge

base under querying.

A corpus-based QA system, on the contrary, searches and

retrieves answers from unstructured corpus. A corpus-based

QA system usually relies on machine comprehension, a tech-

nique that comprehends textual resources (i.e., documents and

web pages on the Internet), to answer questions. Many deep

learning techniques can be leveraged. For example, Wang

et al. have adopted a match-LSTM model and the Pointer

Net model to comprehend documents and generate answers

to questions [14]. New training and evaluation datasets (e.g.,

SQuAD [9]) have also been released, making machine com-

prehension competent to human comprehension.

In this paper, we present CocoQa, a QA system for coding

conventions. CocoQa combines the advantages of the KB-

and the corpus-based QA systems: it stores in a knowledge

base coding conventions collected from online resources; it

builds CCBase, a knowledge graph introduced in [3], for

modeling coding conventions; and it answers questions about

coding conventions by querying the graph. CocoQa is pub-

licly available both as a plugin of Intellij Idea1, and as an

online web service2.

This paper makes two contributions:

1) An approach to QA for coding conventions. Co-
coQa integrates several techniques to perform QAs over

CCBase. Given a question q, CocoQa answers it using:

1) a subgraph matching algorithm that casts q into a

structured query (say sq) followed by querying CCBase,

2) a machine comprehension algorithm that applies an

end-to-end deep neural network to answer sq on textual

paragraphs, and 3) a logistic regression classifier trained

to merge and rank the answers.

2) Implementation and evaluation. We have implemented

CocoQa as an Intellij Idea’s plugin and as well a web

service, providing developers with supports in program-

ming with code conventions. We have also evaluated

CocoQa on a coding convention QA dataset. The re-

sults show that CocoQa can answer questions about

1https://github.com/14dtj/CocoQa/
2http://202.120.40.28:4463

1086

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00108

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 07,2020 at 09:15:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An overview of CocoQa

coding conventions precisely. In particular, CocoQa can

achieve a precision of 82.92% and a recall of 91.10%.

II. DESIGN AND IMPLEMENTATION OF COCOQA

A. Overview

As Figure 1 shows, the CocoQa tool consists of four

components: (1) a coding convention knowledge graph con-

structed from online resources, (2) a subgraph matcher that

understands natural language questions and performs SPARQL

queries over the knowledge graph, (3) a machine compre-
henser that employs a deep neural network model to answer

questions. The comprehenser searches answers from all textual

paragraphs attached to the knowledge graph, and (4) a ranker
that ranks answers retrieved by the subgraph matcher and the

machine comprehenser via a logistic regression classifier.

B. Design

Next explain the four components of CocoQa.

Knowledge Graph. CCBase is a coding convention knowl-

edge graph—structural data are stored in the form of entities

and relations, and unstructured data as descriptive attributes.

CocoQa builds CCBase by following the approach pre-

sented in [3]. First, it designs the ontology of coding conven-

tions, including rule, pros, cons, examples, exceptions, source

code, and applications. Second, it crawls and collects data

about coding conventions from books, standards organizations,

open source organizations, universities, companies, etc. Co-
coQa recognizes entities and relations from the collected data

and establishes the triples in the knowledge graph. CocoQa
also uncovers and establishes the latent relations among enti-

ties, including similar-to, relate-to and subsumption relations.

We also collect unstructured data from online resources.

The collected documents are split into paragraphs and titles

and then attached to entities in CCBase. We use the TF-

IDF weighted bag-of word vector to calculate the similarities

between paragraphs and entities and attach a paragraph to an

entity of the highest score.

The resulting knowledge graph contains 3,761 entities, 767

relations and 1,800 attached paragraphs. The graph can grow

along with introducing new conventions.

Fig. 2. A subgraph matching example

Subgraph Matcher. The subgraph matcher generates answers

to a question by querying entities and their relations in

CCBase. Given a question, it casts the question into a SPARQL

query3 followed by querying CCBase. Figure 2 illustrates

how a question “Q1. what are the effects of using goto?” is

transformed into a query.

More particularly, given a question, the subgraph matcher

takes a subgraph matching algorithm [5] to extract entities

and relations inside and mapping the question into a SPARQL

query: (1) the matcher extracts nodes (including entities and

wh-words) from the question. For example, in Figure 2, “what”
(a wh-word) and “using goto” are identified as two nodes

for Q1. Here Jena Full Text Search4 is employed to identify

entities in a question; (2) the matcher generates a dependency

tree for Q1; (3) the matcher builds a graph Qu: for each

pair of nodes (vi, vj), if there is a path between them in the

dependency tree, an edge is introduced in Qu; the label is set

as the concatenation of words along the path between vi and

vj in the dependency tree. Qu can be mapped to a subgraph

of CCBase, containing only the nodes and edges w.r.t. the

question; and (4) the matcher generates SPARQL queries from

Qu and finds candidate relations in CCBase for the edges.

Machine Comprehenser. The comprehenser generates an-

swers by comprehending textual paragraphs attached as de-

scriptive attributes of entities in CCBase. Thus the question

answering problem becomes a multi-document comprehension

problem.

Given a question, the machine comprehenser first searches

the related paragraphs of the question. It extracts keywords

from the question’s representation. Similar to YodaQA [1], the

comprehenser selects all noun phrases, noun tokens and the

subjects (determined by a dependency parse) as the keywords.

Then it uses the Apache’s Solrsearch engine5 to search full-

text keywords in the texts and titles of paragraphs; the top 10

results are taken as potential paragraphs.

After that, the machine comprehenser employs Match-

LSTM [13] and answer pointer network [12] for retrieving

answers from the potential paragraphs inspired by S Wang’s

work [14]. This neural network consists of three layers. The

first layer is an LSTM layer that preprocesses the paragraph

and the question. The purpose is to encode the contextual

information into each token of the paragraph and the question.

3https://jena.apache.org/tutorials/sparql.html
4https://jena.apache.org/documentation/query/text-query.html
5https://lucene.apache.org/solr/

1087

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 07,2020 at 09:15:53 UTC from IEEE Xplore. Restrictions apply.

The second layer is a match-LSTM layer using the attention

mechanism to integrate the paragraph and the question. The

third layer is an answer pointer layer that selects a set of tokens

from the paragraph as the answer.

Let Hr be the hidden state in the last layer. The probability

of generating an answer is

p(a|Hr) = p(as|Hr)p(ae|as,Hr), (1)

where as and ae represents the start and the end position of the

answer, receptively. The comprehenser globally searches for

answers and retrieves those with highest probabilities, letting

the probability of each answer be p(as)× p(ae).
Note that deep transfer learning is used to train this

network. We collected questions and answers from StackOver-

flow6 to construct a coding convention QA dataset CocoQad,

whilst the dataset is far from enough to train a deep network.

Thus we adopt deep transfer learning to solve the cold start

problem: we first train the model on some general purposed

QA datasets like SQuAD [9] or MARCO [7], and then use our

dataset to tune the pre-trained model. A detailed evaluation of

the tuning will be given in the next section.

Answer Ranker. The answer ranker merges and ranks the

answers obtained from the subgraph matcher and the machine

comprehenser. A normalization process needs to be taken for

removing duplicated answers.

Since ranking can be casted into a classification problem,

we train a logistic regression classifier and sort the answers

by their classification scores. The classifier learns the weights

that allow correct answers to be distinguished from incorrect

answers. During prediction, we rank candidate answers with

confidence scores. The input to this classifier is a vector of

numerical feature values—they are selected by human experts,

including answer features (data source, search result score,

etc.) and similarities of the answers to the question.

C. Implementation

We have implemented CocoQa, which can either be used

as a plugin of Intellij Idea, or as an online web service. The

plugin is implemented in Java, adopting JavaFX to embed a

web view in the plugin panel. The web service is built in

Python. Apache’s Jena Fuseki is used as a SPARQL server.

The CCBase is stored as RDF triples and can be accessed via

a web service.

We adopted a python wrapper of Stanford CoreNLP [6] for

generating the dependency trees of questions. As for the neural

network in machine comprehenser, we employed a python

implementation7 of the Match-LSTM and answer pointer net-

work. It makes some changes to the original network including

replacing LSTM with GRU, adding a fully-connected layer,

etc. The modification can increase the F1 score by 5.3% in

the evaluation.

The snapshot of CocoQa is shown in Figure 3. In a chat

dialog, programmers can raise their questions and the system

6https://stackoverflow.com/
7https://github.com/laddie132/Match-LSTM

Fig. 3. A snapshot of the CocoQa plugin

answers these questions. The returned information is usually

a paragraph containing highlighted answers. If the answers

can be linked to the entities in CCBase, the attributes (pros,

example, etc.) of these coding conventions are also accessible.

Besides, the entities and their related entities are visualized in

the form of force-directed graph.

III. EVALUATION

We have evaluated CocoQa on our code conventions QA

dataset. Our evaluation was designed to answer two research

questions:

RQ1. Can CocoQa accurately answer questions about coding

conventions?

RQ2. What is the best strategies of training Match-LSTM in

machine comprehenser?

A. Setup

Dataset. We collected 214 real questions about coding conven-

tion from StackOverflow. These questions can be divided into

two categories. One is to query attributes of coding conven-

tions, and another is to query coding conventions related with

conditions. For example, “Is there any naming conventions of
boolean methods?”.

We manually found the answers to the questions in CCBase.

We also defined some question templates such as “Tell me
something about #name”—values from the knowledge base

can be retrieved to fill the variables and answers in the

templates automatically.

The resulting coding convention QA dataset (say Coco-
Qad) contains 1714 question answer pairs. This coding con-

vention dataset is further divided into a training set (50%), a

validation set (30%), and a test set (20%) in our evaluation.

Metrics. For measuring CocoQa’s capability of question

answering, we selected precision, recall, and F1 as metrics,

which are often used to evaluate QA systems.

For measuring the training capability of Match-LSTM on

CocoQad, we employed EM (Exact Match) and F1 as metrics,

which were as well used for evaluating Match-LSTM on

SQuAD.

1088

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 07,2020 at 09:15:53 UTC from IEEE Xplore. Restrictions apply.

TABLE I
A COMPARISON AMONG COCOQA

Component Precision Recall F1
Subgraph Matcher 85.20 83.91 84.50

Machine Comprehenser 72.12 89.53 79.89
CocoQa 82.92 91.10 86.82

TABLE II
A COMPARISON OF STRATEGIES FOR TRAINING MATCH-LSTM.

Dev Test
Strategy Training data EM F1 EM F1

Union SQuAD + CocoQad 63.35 83.74 48.70 66.02
MARCO + CocoQad 59.16 81.75 40.25 64.70

Tagging SQuAD + CocoQad 61.78 86.60 51.30 66.43
MARCO + CocoQad 60.21 83.65 44.15 66.69

Fine-tuning
SQuAD (training)
CocoQad (tuning)

62.83 86.12 53.24 72.53

MARCO (training)
CocoQad (tuning)

56.64 81.45 39.61 66.30

B. Results to RQ1

We compared CocoQa against a QA system with subgraph

matcher and another with machine comprehenser. As Table I

shows, machine comprehenser can achieve higher recall but

lower precision than subgraph matcher. One reason for this is

that machine comprehenser learns knowledge from rich textual

data and tends to return extra information.

As a combination of a subgraph matcher and a compre-

henser, CocoQa can achieve high precision (82.92%), recall

(91.10%), and F1 score (86.82%), indicating that CocoQa
can answer questions about coding conventions precisely.

Furthermore, answer ranker helps prioritize correct answers,

which significantly facilitates programmers to obtain answers

they need.

C. Results to RQ2

To solve the problem of insufficient training data, CocoQa
takes a fine-tunning strategy: it transfers learning from some

general-purposed QA datasets, like SQuAD and MARCO,

and then tunes the model using CocoQad. We compare this

strategy with two strategies:

1) A union strategy. We trained the machine compre-

hension model on a collection of CocoQad and

SQuAD/MARCO.

2) A tagging strategy. This strategy is similar to the strat-

egy designed by Chu et al. [4]. We appended tags

(“[2SQuAD]” and “[2CoCoQad]”, etc.) to data items

to indicate their belongings. Besides, we oversampled

CocoQad so that the training process can pay equal

attention to each domain.

The results are shown in Table II. The union strategy is not

satisfying, since CocoQad is too small to be comparable with

the other datasets. The data items in CocoQad are also signif-

icantly different from those in the other sets, since the answers

are usually complex, containing many programing language-

specific terms and code snippets. The tagging strategy achieves

little improvement over union strategy. Comparatively, the

fine-tuning strategy achieves the highest EM and F1-score.

IV. CONCLUSION

This paper have presented CocoQa, a QA system that

can answer questions for coding conventions over knowledge

graph. CocoQa leverages several techniques (including sub-

graph matching and machine comprehension) so that precise

answers can be retrieved. We have evaluated our system

on a dataset that contains 1714 QA pairs. The evaluation

results demonstrate the capability of CocoQa–it can achieve

a precision of 82.92% and a recall of 91.10%, indicating that

the answers are precise and do meet the programmers’ needs.

ACKNOWLEDGMENT

This research was sponsored by the National Key Re-

search and Development Program of China (Project No.

2018YFB1003903), National Nature Science Foundation of

China (Grant No. 61472242 and 61572312).

REFERENCES

[1] P. Baudiš and J. Šedivỳ. Modeling of the question answering task in
the yodaqa system. In International Conference of the Cross-Language
Evaluation Forum for European Languages, pages 222–228. Springer,
2015.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge.
In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 1247–1250. AcM, 2008.

[3] J. Cao, T. Du, B. Shen, W. Li, Q. Wu, and Y. Chen. Constructing a
knowledge base of coding conventions from online resources (S). In The
31th International Conference on Software Engineering and Knowledge
Engineering, 2019.

[4] C. Chu, R. Dabre, and S. Kurohashi. An empirical comparison of
simple domain adaptation methods for neural machine translation. arXiv
preprint arXiv:1701.03214, 2017.

[5] S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao. Answering natural
language questions by subgraph matching over knowledge graphs. IEEE
Transactions on Knowledge and Data Engineering, 30(5):824–837,
2017.

[6] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. Mc-
Closky. The stanford corenlp natural language processing toolkit. In
Proceedings of 52nd annual meeting of the association for computa-
tional linguistics: system demonstrations, pages 55–60, 2014.

[7] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,
and L. Deng. Ms marco: A human generated machine reading compre-
hension dataset. arXiv preprint arXiv:1611.09268, 2016.

[8] Y. Qu, J. Liu, L. Kang, Q. Shi, and D. Ye. Question answering over
freebase via attentive rnn with similarity matrix based cnn. arXiv
preprint arXiv:1804.03317, 2018.

[9] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[10] U. Sawant, S. Garg, S. Chakrabarti, and G. Ramakrishnan. Neural
architecture for question answering using a knowledge graph and web
corpus. Information Retrieval Journal, pages 1–26, 2019.

[11] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on
World Wide Web, pages 697–706. ACM, 2007.

[12] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances
in Neural Information Processing Systems, pages 2692–2700, 2015.

[13] S. Wang and J. Jiang. Learning natural language inference with lstm.
arXiv preprint arXiv:1512.08849, 2015.

[14] S. Wang and J. Jiang. Machine comprehension using match-lstm and
answer pointer. arXiv preprint arXiv:1608.07905, 2016.

[15] W. Zheng, J. X. Yu, L. Zou, and H. Cheng. Question answering over
knowledge graphs: question understanding via template decomposition.
Proceedings of the VLDB Endowment, 11(11):1373–1386, 2018.

1089

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 07,2020 at 09:15:53 UTC from IEEE Xplore. Restrictions apply.

