
BugPecker: Locating Faulty Methods with Deep Learning on
Revision Graphs

Junming Cao, Shouliang Yang, Wenhui Jiang, Hushuang Zeng, Beijun Shen, Hao Zhong
{junmingcao,ysl0108,swingteki,zenghushuang,bjshen,zhonghao}@sjtu.edu.cn

Shanghai Jiao Tong University, China

ABSTRACT

Given a bug report of a project, the task of locating the faults of the

bug report is called fault localization. To help programmers in the

fault localization process, many approaches have been proposed,

and have achieved promising results to locate faulty files. How-

ever, it is still challenging to locate faulty methods, because many

methods are short and do not have sufficient details to determine

whether they are faulty. In this paper, we present BugPecker, a

novel approach to locate faulty methods based on its deep learn-

ing on revision graphs. Its key idea includes (1) building revision

graphs and capturing the details of past fixes as much as possible,

and (2) discovering relations inside our revision graphs to expand

the details for methods and calculating various features to assist

our ranking. We have implemented BugPecker, and evaluated it on

three open source projects. The early results show that BugPecker

achieves a mean average precision (MAP) of 0.263 and mean re-

ciprocal rank (MRR) of 0.291, which improve the prior approaches

significantly. For example, BugPecker improves the MAP values

of all three projects by five times, compared with two recent ap-

proaches such as DNNLoc-m and BLIA 1.5.

ACM Reference Format:

Junming Cao, Shouliang Yang, Wenhui Jiang, Hushuang Zeng, Beijun Shen,

Hao Zhong. 2020. BugPecker: Locating Faulty Methods with Deep Learn-

ing on Revision Graphs. In 35th IEEE/ACM International Conference on

Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual

Event, Australia. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/

3324884.3418934

1 INTRODUCTION

With the increase of software development’s scale and complex,

endless emerging bugs cost a huge amount of development time and

effort. It is rather difficult and time-consuming for programmers

to locate faulty code precisely, especially in projects with many

source files. Therefore, given a bug report, various fault localization

techniques have been proposed to identify its faulty files [27]. The

identified faulty files could either be delivered to programmers for

repairs, or serve as the inputs of automated program repair [8].

Generally, fault localization approaches could be divided into two

mainstreams [9]. The first line of approaches is spectra-based fault

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3418934

localization, which analyzes the program execution information of

passing and failing test cases [10]. However, as introduced by Anil

et al. [8], test cases are usually not available when bugs are reported.

In contrast, the second line of approaches compare bug reports with

source files, and identify similar source files as faulty files [20, 21,

25]. These approaches are known as IR-based fault localization, and

they consider the fault localization as a search problem: bug reports

are queries and faulty files are answers. Most IR-based approaches

localize faulty files [9, 20, 25]. Only a few recent approaches [21, 23]

localize faulty methods, but their effectiveness is less impressive.

For example, the evaluation of a recent approach [23] shows that

the MAP values on Ant are only 0.0498 (Youm et al. [21]), 0.0494

(Zhang et al. [24]), and 0.0550 (Zhang et al. [23]). It is challenging

to improve the prior approaches, because some methods are short

and lack sufficient details to be matched against bug reports.

In this paper, we present BugPecker, a novel approach to locate

faulty methods. Our early results in Section 3 show that BugPecker

significantly improves the state-of-the-art approaches [9, 21]. For

example, the MAP on Tomcat is increased from 0.017 of Lam

et al. [9] and 0.005 of Youm et al. [21] to our 0.121. BugPecker

makes significant improvements, because it introduces deep learn-

ing and is the first to encode the commits and bug reports into

revision graphs. As shown in Table 1, revision graphs are graphs

whose nodes are bug reports, commits, files, and methods and

whose edges denote their relations.

Figure 1 shows an overview of BugPecker. It consists of three

components: (1) the revision analyzer constructs revision graphs

from past fixes; (2) the semantic matcher calculates semantic simi-

larity scores between bug reports and methods; and (3) the DNN

learner locates faulty methods based the scores.

This paper makes the following contributions:

(1) Analyzing past fixes as revision graphs. We construct

revision graphs through analyzing code, commits, and bug reports.

Furthermore, we leverage the graphs to enrich method details by

incorporating its related methods, and calculate various features to

assist the recommendation.

(2) Learning source files via abstract syntax trees (ASTs).

AST based code representation could capture both the lexical (i.e.

the leaf nodes of ASTs such as identifiers) and syntactical (i.e. the

non-leaf nodes of ASTs like the grammar constructWhileStatement)

information [22]. To our best knowledge, BugPecker is the first to

introduce AST parsing into IR-based fault localization.

(3) An open source tool and evaluations. We have released

BugPecker onGithub, and evaluated it on three open source projects.

The results show that BugPecker could localize bugs at method

level more precisely than the baselines, achieving a 𝑀𝐴𝑃 of 0.263

and a𝑀𝑅𝑅 of 0.291.

1083

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)



Figure 1: An overview of BugPecker

2 BUGPECKER

We next explain the three components of BugPecker.

2.1 The revision analyzer

The analyzer builds revision graphs from code, commits and past

bug reports. As shown in Table 1, revision graphs define the fol-

lowing entities and relations between them: repository, bug re-

port, commit, file and method. As the code related entities, file and

method both have a “version” attribute.

The analyzer extracts the has, modify relations from the reposi-

tory; uses Spoon [16] to extract call relations between methods; and

adopts the approach presented by Dallmeier and Zimmermann [4]

to extract the fix relations between code commits and bug reports.

Themodify relations between a bug report andmethods are inferred

from the modify relations between a bug report and its commits.

In particular, the analyzer applies a structural-context similar-

ity, SimRank [6], to identify the similar-to relations. Let 𝑆𝑏𝑖 𝑗 denote

the similarity between bug reports 𝑏𝑖 and 𝑏 𝑗 , and 𝑆
𝑚
𝑖 𝑗 denote the

similarity between methods𝑚𝑖 and𝑚 𝑗 . SimRank has the following

steps: In Step 1, 𝑆𝑏𝑖𝑖 and 𝑆𝑚𝑖𝑖 are set as 1 and will not be updated

later. All other similarity scores are initialized as 0. In Step 2, simi-

larity scores are updated iteratively (5 rounds of iteration) by the

following equations:

𝑆𝑏𝑖 𝑗 =
𝐶

|𝑀 (𝑏𝑖 ) | |𝑀 (𝑏 𝑗 ) |

|𝑀 (𝑏𝑖 ) |∑

𝑘=1

|𝑀 (𝑏 𝑗 ) |∑

𝑙=1

𝑆𝑚𝑘𝑙 , (1)

𝑆𝑚𝑖 𝑗 =
𝐶

|𝐵(𝑚𝑖 ) | |𝐵(𝑚 𝑗 ) |

|𝐵 (𝑚𝑖 ) |∑

𝑘=1

|𝐵 (𝑚 𝑗 ) |∑

𝑙=1

𝑆𝑏𝑘𝑙 , (2)

where𝑀 (𝑏𝑖 ) is the set of methods modified by𝑏𝑖 , 𝐵(𝑚𝑖 ) is the set of

bug reports that modified𝑚𝑖 , and𝐶 is the rate of decay as similarity

flows in the revision graphs, which is set 0.8. In Step 3, we pick the

pairs that have a similarity score larger than 0.001 (except 𝑆𝑏𝑖𝑖 and

Table 1: Relations in revision graphs

Relation Bug report Commit File Method

Repository has has has has

Bug report similar-to - - modify

Commit fix similar-to modify modify

File - - - has

Method - - - similar-to, call

Except similar-to, all the other relations are directed.

𝑆𝑚𝑖𝑖 ) as similar bug reports and methods. Instead of content based
similarity measurement, SimRank can work well for short methods

lacking sufficient semantic information.

The revision graphs offer the following benefits to BugPecker:

(1) It enables to alleviate the method information insufficient

problem. As revision graphs provide comprehensive relations of

methods, the semantic matcher allows matching semantic contents

and expanding the details for short methods.

(2) It enables to calculate a revised collaborative filtering fea-

ture for bug location ranking. Revision graphs record the relations

among methods, commits and bug reports, which are required by

the learner to calculate the most influential feature – revised collab-

orative filtering score.

During training or testing, revision graphs also allow obtaining

versions (e.g., the version before a fix) and bug reports efficiently.

2.2 The semantic matcher

The matcher calculates the semantic similarity between a method

(𝑚) and a bug report (𝑏). We introduce the ASTNN [22] model to

embed𝑚, which preserves the code structure and semantic informa-

tion. Meanwhile, we use theWord2Vec to embed each word token

in 𝑏 into a vector, and get the global semantic of 𝑏 by Bi-GRU. The
embeddings of𝑚 and 𝑏 are not in the same vector space, so it is
hard to measure their semantic similarity. Inspired by the idea of

domain-invariant feature extraction in transfer learning, we adopt

a multi-layer perceptron to map the embeddings of methods and

bug reports into the same vector space. The cosine similarity is

calculated to measure the semantic similarity between the two

embeddings. We pre-trained the embeddings of special syntactic

symbols (such as identifiers) with the source code of all the projects

in the dataset. They are served as initial parameters to train state-

ment vectors in ASTNN. The Word2Vec is used to pre-train the

embeddings of top 5,000 high-frequency word tokens.

We notice that many methods are short. For example, in Tomcat,

there are 46.49% methods within 3 statements and 77.59% meth-

ods within 5 statements. Because of the sparsity and ambiguity

of information in these short methods, it is challenging to match

them with the bug report correctly. Zhang et al. [23] proposed a

method expansion algorithm to alleviate this problem. Inspired by

this work, we expand short methods (within 5 statements) with re-

lated methods. However, the expansion algorithm proposed by [23]

applied cosine similarity to retrieve similar methods as expansion

information, and consequently for short methods, these so-called

similar methods are not similar. Thus, we propose an improved

method expansion approach on revision graphs, described as fol-

lows. For method𝑚, the top 10 methods with the highest SimRank

similarity score from revision graphs are collected in𝑀𝑠𝑖𝑚 , and all

methods that𝑚 calls are collected in𝑀𝑐𝑎𝑙𝑙 . Then,𝑀𝑟𝑒𝑙 , as the union

1084



of𝑀𝑠𝑖𝑚 and𝑀𝑐𝑎𝑙𝑙 , are used to expand methods. Every𝑚𝑖 ∈ 𝑀𝑟𝑒𝑙
is also embedded by ASTNN. Different from directly adding the

vectors of methods in [23], which may bring about noisy data, we

introduce a soft-attention mechanism [18] to retrieve the useful

information 𝑢 for𝑚, defined as follows:

𝑎𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥
(
�𝑚T �𝑚𝑖

)
, (3)

�𝑢 =
|𝑀𝑟𝑒𝑙 |∑
𝑖=1

𝑎𝑖 �𝑚𝑖 , (4)

where→ denotes embedding, and 𝑎𝑖 denotes the attention proba-
bility of𝑚 over method𝑚𝑖 . After that, we employ a Gated Recurrent

Unit (GRU) gate [3] to integrate the embedding of retrieved infor-

mation �𝑢 into �𝑚. As a result, the embedding of expanded method

�𝑚
′
becomes richer and denser than the original embedding �𝑚.

�𝑞 = 𝜎
(
W(𝑞) �𝑚 + U(𝑞) �𝑢

)
, (5)

�𝑟 = 𝜎
(
W(𝑟 ) �𝑚 + U(𝑟 ) �𝑢

)
, (6)

�𝑢
′
= tanh (W �𝑚 + �𝑟 ◦ U�𝑢) , (7)

�𝑚
′
= (1 − �𝑞) ◦ �𝑚 + �𝑞 ◦ �𝑢

′
, (8)

where ◦ denotes elementwise multiplication, 𝜎 is the sigmoid activa-
tion function, tanh is the tanh activation function, �𝑞 is the weighting

vector between �𝑚 and �𝑢
′
, and �𝑢

′
denotes the information used to

expand �𝑚. The output �𝑚
′
is the expanded embeddings of the short

input method �𝑚, and the original embedding �𝑚 of method m is

replaced by �𝑚
′
to calculate the semantic similarity.

2.3 The learner

Given a bug report (𝑏𝑛), the learner aims to select the most possible
faulty methods from the method set (𝑀) and rank them by the

suspicious score. Specifically, it extracts four features from revision

graphs, applies a non-linear DNN with four hidden layers to get

the suspicious score of 𝑏𝑛 and each𝑚 in𝑀 in the repository, and

returns the top-ranked faulty methods by this score. Besides the

semantic matching score, three features are designed and calculated

as the inputs of the DNN model:

(1) Revised collaborative filtering score (rcfs). cfs calculates the

relevant value between a new bug report (𝑏𝑛) and all methods (𝑀)

according to the previous revision history [25]. This model relies

on similar-to relations between 𝑏𝑛 and previous fixed bug reports
𝐵𝑝𝑟𝑒𝑣 , and fix relations between 𝐵𝑝𝑟𝑒𝑣 and𝑀 . However, there are

no existing similar-to relations of 𝑏𝑛 , because SimRank could only
be used for bug reports that we have known their fixed methods.

Moreover, our revision graphs do not have many fix relations, and

can underestimate the similarity values. Therefore, we propose

Algorithm 1 to compute rcfs for each𝑚 in𝑀 . In Step 1, we revise

the cosine similarity values between 𝑏𝑛 and 𝑏𝑖 ∈ 𝐵𝑝𝑟𝑒𝑣 with 𝑆
𝑏 . In

Step 3, cfs scores are revised into rcfs via 𝑆𝑚 .
(2) Bug fixing recency score (bfr) and frequency score (bff ). bfr

measures how recent a method has been fixed, and bff measures

the bug-fixing frequency for a method. Let 𝑏
′
be the bug report that

was most recently fixed in method𝑚 before 𝑏𝑛 . If the commit time

Algorithm 1: The procedure of calculating rcfs

Input: 𝑏𝑛 : a new given bug report
𝑀 : all methods in the repository to be localized
𝐵𝑝𝑟𝑒𝑣 : bug reports fixed before 𝑏𝑛 (by commit time)

𝑆𝑏𝑖 𝑗 : similarity scores between 𝑏𝑖 and 𝑏 𝑗 in 𝐵
𝑝𝑟𝑒𝑣

𝑆𝑚𝑖𝑗 : similarity scores between𝑚𝑖 and𝑚 𝑗 in𝑀

(both 𝑆𝑏𝑖 𝑗 and 𝑆
𝑚
𝑖𝑗 are provided by revision graphs)

Output: revised cfs score: 𝑟𝑐 𝑓 𝑠𝑚𝑖 , for𝑚𝑖 ∈ 𝑀

/* Step 1: get 𝑆𝑏𝑛𝑖, for 𝑏𝑖 ∈ 𝐵𝑝𝑟𝑒𝑣 */

1 for 𝑏𝑖 ∈ 𝐵𝑝𝑟𝑒𝑣 do

2 𝑆𝑏𝑛𝑖 =
∑|𝐵𝑝𝑟𝑒𝑣 |

𝑗=1 𝑆𝑏𝑖 𝑗 ∗ 𝑐𝑜𝑠𝑆𝑖𝑚 (𝑏 𝑗 , 𝑏𝑛) + 𝑐𝑜𝑠𝑆𝑖𝑚 (𝑏𝑖 , 𝑏𝑛)

/* Step 2: get 𝑐 𝑓 𝑠𝑚𝑖 , for 𝑚𝑖 ∈ 𝑀 */

3 𝑀𝑏𝑖 denotes methods that have been modified by 𝑏𝑖
4 for𝑚𝑖 ∈ 𝑀 do
5 for 𝑏 𝑗 ∈ 𝐵𝑝𝑟𝑒𝑣 do
6 if𝑚𝑖 ∈ 𝑀𝑏𝑗 then

7 add 𝑏 𝑗 into 𝐵𝑚𝑖

8 𝑐 𝑓 𝑠𝑚𝑖 =
∑|𝐵𝑚𝑖 |

𝑗=1 𝑆𝑏𝑛𝑗 ∗
1

|𝑀𝑏𝑗
| , 𝑏 𝑗 ∈ 𝐵𝑚𝑖

/* Step 3: revise 𝑐 𝑓 𝑠𝑚𝑖 with 𝑆𝑚 */

9 for𝑚𝑖 ∈ 𝑀 do

10 𝑟𝑐 𝑓 𝑠𝑚𝑖 =
∑|𝑀 |

𝑗=1 𝑐 𝑓 𝑠𝑚𝑗 ∗ 𝑆
𝑚
𝑖𝑗 + 𝑐 𝑓 𝑠𝑚𝑖

of 𝑏
′
was earlier than 𝑏𝑛 by 𝑘 month, then bfr for method𝑚 can be

calculated as:

𝑏𝑓 𝑟 =
1

𝑘 + 1
, (9)

and bff can be scored as the times that 𝐵𝑝𝑟𝑒𝑣 are fixed in𝑚. We

normalize the matching scores and features to be within [0,1].

3 EARLY RESULT

In our early study, we explore the following two research questions:

RQ1. Can BugPecker outperform existing fault localization ap-

proaches at method level?

RQ2. How does method expansion, rcfs, bfr and bfs contribute

to the fault localization performance of BugPecker?

We have implemented the BugPecker tool as a Github plugin [2]

in Java. Our implementation and dataset have been published on

Github: https://github.com/RAddRiceee/BugPecker.

3.1 Setup

Dataset. The benchmark dataset created by [20] from three open-

source projects (AspectJ, SWT and Tomcat) are used for our evalu-

ation. The prior studies [7, 14] show that some bug reports already

describe which files and methods are faulty, and we call such bug

reports as localized bug reports. As faults of these bug reports are

already revealed, they do not need any fault localization technique

to determine their faulty files or methods. As Kochhar et al. [7] did,

we remove those localized bug reports from the dataset of our evalu-

ation. Table 2 shows the dataset information about each project. We

filter out added methods in commits, and consider deleted methods

the same as updated methods. For fixes related to multiple meth-

ods, we generate multiple positive samples for every method. If at

least one ground truth methods appearing in the top ranked faulty

methods list, the bug localization succeeds.

Fault localization models are trained with the oldest 80% bug

reports, and tested with the newest 20% bug reports. To avoid the

model cheating from future ground truths, the similar-to and call

1085



Table 2: Dataset

Project Not Localized

Bug Reports

Methods Similar-to

(methods)

Similar-to

(bug reports)

Call

Tomcat 927 36,569 110,350 1,804 41,224

AspectJ 316 34,670 71,933 811 88,719

Swt 1,491 13,456 19,422 8,376 58,405

relations are discovered only with the training set. In the testing

phase, the same set of relations is used. The benchmark dataset

records faulty files. We compare them with clean versions and

consider modified methods as our true labels.

Metrics. We use Top-k accuracy,Mean Average Precision (MAP) and

Mean Reciprocal Rank (MRR) as evaluation metrics, which have

been widely used in fault localization and information retrieval [9,

20, 21, 23]. For these metrics, a larger value indicates a better result.

Baselines.We compareBugPeckerwith two state-of-art approaches:

(1) BLIA 1.5 [21]. It is the most advanced IR-based approach.

By integrating the stack trace feature, collaborative filtering feature,

and commit history feature with structural VSM, it achieves better

results than previous IR-based approaches like bugLocator [25]. It

provides the localization at method level.

(2) DNNLoc [9]. It proposed a combining approach between

rVSM and DNN to learn to connect terms in bug reports to code

tokens in source files. As the author did not provide the source

code, we use a replication package from Github [1]. The original

implementation of DNNLoc is for file level fault localization, thus

we adapt it to method level (“DNNLoc-m”). In DNNLoc-m, features

of methods, including rVSM,DNN relevancy score, etc., are computed

in the same way of files.

Table 3: Overall results

Project Approach Top1(%) Top5(%) Top10(%) MAP MRR

Tomcat DNNLoc-m 2.326 5.814 5.814 0.017 0.021
BLIA 1.5 0 0.108 0.215 0.005 0.005
BugPecker 12.230 13.669 15.827 0.121 0.143

AspectJ DNNLoc-m 4.167 10.417 20.833 0.051 0.113
BLIA 1.5 0.316 1.294 2.916 0.012 0.011
BugPecker 22.917 27.083 35.417 0.263 0.291

Swt DNNLoc-m 5.34 16.087 20.434 0.058 0.102
BLIA 1.5 1.073 2.481 3.689 0.016 0.018
BugPecker 23.913 28.261 36.956 0.253 0.267

3.2 Results to RQ1

Table 3 presents the comparison results of BugPecker, BLIA 1.5 and

DNNLoc-m. DNNLoc-m achieves better results than BLIA 1.5. On

our dataset and setting, BLIA 1.5 achieves much poorer than what

were reported in their paper [21]. There are two reasons for this:

(1) We evaluate with not localized bug reports. Without hints in bug

reports, IR-based fault localization approaches suffer from a more

severe semantic gap problem. (2) BLIA 1.5 only picks methods in

the top-10 localized files as candidates. Indeed, we did not compare

with FineLocator [23], because it is not open source. Although they

evaluate BLIA 1.5 on different projects, their results are consistent

with ours. Besides, FineLocator makes only marginal improvements

over BLIA 1.5. For example, the MAP is improved from 0.0666 to

0.0741 on 94 Aspectj bug reports, and from 0.0409 to 0.0624 on 87

Maven bug reports.

Compared with their results, Table 3 shows that for all three

projects, BugPecker improves the MAP values by five times and all

the other measures are much better than the baselines.

Table 4: The impacts of our techniques on Tomcat

Feature Top1(%) � MAP � MRR �

complete model 12.230 - 0.121 - 0.143 -

w/o rcfs 7.194 -5.036 0.074 -0.047 0.087 -0.056

w/o bfr 11.511 -0.719 0.113 -0.008 0.127 -0.016

w/o bff 8.633 -3.587 0.085 -0.036 0.092 -0.051

w/o method expansion 10.072 -2.158 0.097 -0.024 0.117 -0.026

3.3 Results to RQ2

We analyze the feature contributions to the localization perfor-

mance through an ablation experiment on Tomcat dataset.

As Table 4 shows, rcfs contributes mostly, because it could im-

prove the localization of short methods significantly by exploiting

similar-to relations in revision graphs. bff also plays an important

role. This follows the pattern that the frequently fixed methods

in the past are the ones that are likely to be fixed in the future. It

seems that method expansion is not very helpful. A possible reason

is that relations between methods have already been exploited in

rcfs more explicitly.

4 CONCLUSION AND RESEARCH PLAN

In this paper, we propose BugPecker to locate faulty methods via

deep learning on revision graphs. Our early results show that Bug-

Pecker outperforms DNNLoc-m and BLIA 1.5 approaches signifi-

cantly, with a𝑀𝐴𝑃 of 0.263 and𝑀𝑅𝑅 of 0.291. To extend this work

to a full paper, our research plan is as follows:

1. Obtaining more empirical evidence to show our improve-

ments. Although our early results are quite positive, BugPecker is

evaluated on limited subjects and compared with only two recent

approaches. To ensure that we make stable improvements, we will

compare with more approaches (e.g., FineLocator [23], MULAB [24]

and Blizzard [17]) on more subjects and measures (e.g., recall@k).

In addition, we will collect more empirical evidence to explain the

rationales behind our design, equations, and thresholds.

2. Improving our effectiveness with more features. We plan

to extract more features from our revision graphs. First, it can

be feasible to extract features from other sources such as Stack

Overflow [17, 26], comments [9], and API sequence [5, 12]. Second,

it is feasible to extract social network features by analyzing the

structures of our revision graphs. Finally, it is worth exploring more

features with graph neural networks [11, 15].

3. Learning from revision graphs of other projects. As Bug-

Pecker learns from historical bug reports and their fixed methods, it

may suffer from a cold start problem for newly established projects.

A feasible solution to this problem is to learn from other projects,

but we have to overcome two barriers. First, the data from other

projects can be quite large, so our algorithms shall be optimized to

analyze so large data. Second, the knowledge from other projects

may not apply to a new project. We plan to introduce transfer

learning techniques [13, 19] to bridge the knowledge gap between

a project and its referenced projects.

ACKNOWLEDGMENTS

Beijun Shen is the corresponding author. This research was spon-

sored byNational Key R&DProgram of China (Project No. 2018YFB1-

003903), and National Nature Science Foundation of China (Grant

No. 61472242).

1086



REFERENCES
[1] 2020. The DNNLoc replication package. https://github.com/emredogan7/bug-

localization-by-dnn-and-rvsm.
[2] 2020. GitHub Apps. https://developer.github.com/v3/apps/.
[3] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014).

[4] Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of bug local-
ization benchmarks from history. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. 433–436.

[5] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API Learning. arXiv:1605.08535 [cs.SE]

[6] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context
similarity. In KDD. ACM, 538–543.

[7] Pavneet Singh Kochhar, Yuan Tian, and David Lo. 2014. Potential biases in bug
localization: do they matter?. In ASE. ACM, 803–814.

[8] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monper-
rus, Jacques Klein, and Yves Le Traon. 2019. iFixR: bug report driven program
repair. In ESEC/SIGSOFT FSE. ACM, 314–325.

[9] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2017.
Bug localization with combination of deep learning and information retrieval. In
ICPC. IEEE Computer Society, 218–229.

[10] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In ISSTA. ACM,
169–180.

[11] Yi Li, ShaohuaWang, Tien N. Nguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. Proc. ACM Program. Lang. 3, OOPSLA (2019), 162:1–162:30.

[12] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. 2019. Generating query-specific class API summaries.
In ESEC/SIGSOFT FSE. ACM, 120–130.

[13] Jie Lu, Vahid Behbood, Peng Hao, Hua Zuo, Shan Xue, and Guangquan Zhang.
2015. Transfer learning using computational intelligence: A survey. Knowledge-
Based Systems 80 (2015), 14–23.

[14] Chris Mills, Jevgenija Pantiuchina, Esteban Parra, Gabriele Bavota, and Sonia
Haiduc. 2018. Are Bug Reports Enough for Text Retrieval-Based Bug Localization?.

In ICSME. IEEE Computer Society, 381–392.
[15] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

convolutional neural networks for graphs. In ICML. 2014–2023.
[16] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel

Seinturier. 2016. Spoon: A library for implementing analyses and transformations
of java source code. Software: Practice and Experience 46, 9 (2016), 1155–1179.

[17] Mohammad Masudur Rahman and Chanchal K. Roy. 2018. Improving IR-based
bug localization with context-aware query reformulation. In ESEC/SIGSOFT FSE.
ACM, 621–632.

[18] Jian Tang, Yue Wang, Kai Zheng, and Qiaozhu Mei. 2017. End-to-end Learning
for Short Text Expansion. In KDD. ACM, 1105–1113.

[19] Shuhan Yan, Beijun Shen, Wenkai Mo, and Ning Li. 2017. Transfer Learning
for Cross-Platform Software Crowdsourcing Recommendation. In APSEC. IEEE
Computer Society, 269–278.

[20] Xin Ye, Razvan C. Bunescu, and Chang Liu. 2014. Learning to rank relevant files
for bug reports using domain knowledge. In SIGSOFT FSE. ACM, 689–699.

[21] Klaus Changsun Youm, June Ahn, and Eunseok Lee. 2017. Improved bug local-
ization based on code change histories and bug reports. Inf. Softw. Technol. 82
(2017), 177–192.

[22] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In ICSE. IEEE / ACM, 783–794.

[23] Wen Zhang, Ziqiang Li, Qing Wang, and Juan Li. 2019. FineLocator: A novel
approach to method-level fine-grained bug localization by query expansion. Inf.
Softw. Technol. 110 (2019), 121–135.

[24] Yun Zhang, David Lo, Xin Xia, Giuseppe Scanniello, Tien-Duy B Le, and Jianling
Sun. 2018. Fusing multi-abstraction vector space models for concern localization.
Empirical Software Engineering 23, 4 (2018), 2279–2322.

[25] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug reports.
In ICSE. IEEE Computer Society, 14–24.

[26] Jiangang Zhu, Beijun Shen, Xuyang Cai, and Haofen Wang. 2015. Building a
Large-scale Software Programming Taxonomy from Stackoverflow. In SEKE. KSI
Research Inc. and Knowledge Systems Institute Graduate School, 391–396.

[27] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang.
2018. An Empirical Study of Fault Localization Families and Their Combinations.
CoRR abs/1803.09939 (2018).

1087


